
Inside USB Transfers

USB Complete 33

2

Inside USB Transfers
This and the next three chapters are a tutorial on USB transfers. This chap-
ter has essentials that apply to all transfers. The following chapters cover the
four transfer types supported by USB, the enumeration process, and the
standard requests used in control transfers.

You don’t need to know every bit of this information to get a project up and
running, but understanding something about how transfers work can help
in deciding which transfer types to use, writing device firmware, and debug-
ging.

The information in these chapters is dense. If you don’t have a background
in USB, you won’t absorb it all in one reading. You should, however, get a
feel for how USB works, and will know where to look later when you need
to check the details.

The ultimate authority on the USB interface is the specification document,
Universal Serial Bus Specification, available on the USB-IF’s Web site. By
design, the specification omits information and tips that are unique to any
operating system or controller chip. This type of information is essential

Chapter 2

34 USB Complete

when you’re designing a product for the real world, so I include this infor-
mation where relevant.

Transfer Basics
You can divide USB communications into two categories: communications
used in enumerating the device and communications used by the applica-
tions that carry out the device’s purpose. During enumeration, the host
learns about the device and prepares it for exchanging data. Application
communications occur when the host exchanges data that performs the
functions the device is designed for. For example, for a keyboard, the appli-
cation communications are the sending of keypress data to the host to tell an
application to display a character or perform another action.

Enumeration Communications
During enumeration, the device’s firmware responds to a series of standard
requests from the host. The device must identify each request, return
requested information, and take other actions specified by the requests.

On PCs, Windows performs the enumeration, so there’s no user program-
ming involved. However, to complete the enumeration, on first attachment,
Windows must locate an INF file that identifies the file name and location
of the device’s driver. If the required files are available and the firmware
functions correctly, the enumeration process is generally invisible to users.
Chapter 9 has more details about device drivers and INF files.

Application Communications
After the host has exchanged enumeration information with the device and
a device driver has been assigned and loaded, the application communica-
tions can begin. At the host, applications can use standard Windows API
functions or other software components to read and write to the device. At
the device, transferring data typically requires either placing data to send in
the USB controller’s transmit buffer or retrieving received data from the
receive buffer, and on completing a transfer, ensuring that the device is ready

Inside USB Transfers

USB Complete 35

for the next transfer. Most devices also require additional firmware support
for handling errors and other events. Each data transfer uses one of the four
transfer types: control, interrupt, bulk, or isochronous. Each has a format
and protocol to suit different needs.

Managing Data on the Bus
USB’s two signal lines carry data to and from all of the devices on the bus.
The wires form a single transmission path that all of the devices must share.
(As explained later in this chapter, an exception is a cable segment between a
1.x device and a 2.0 hub on a high-speed bus, but even here, all data shares a
path between the hub and host.) Unlike RS-232, which has a TX line to
carry data in one direction and an RX line for the other direction, USB’s
pair of wires carries a single differential signal, with the directions taking
turns.

The host is in charge of seeing that all transfers occur as quickly as possible.
The host manages the traffic by dividing time into chunks called frames (at
low and full speeds) or microframes (at high speed). The host allocates a
portion of each frame or microframe to each transfer (Figure 2-1). A frame
has a period of one millisecond. For high speed traffic, the host divides each
frame into eight 125-microsecond microframes. Each frame or microframe
begins with a Start-of-Frame timing reference.

Figure 2-1: At low and full speeds, the host schedules transactions within
1-millisecond frames.The host may schedule transactions anywhere it wants
within a frame. The process is similar at high speed, but using 125-microsecond
microframes.

Chapter 2

36 USB Complete

Each transfer consists of one or more transactions. Control transfers always
have multiple transactions because they have multiple stages, each consisting
of one or more transactions. Other transfer types use multiple transactions
when they have more data than will fit in a single transaction. Depending
on how the host schedules the transactions and the speed of a device’s
response, a transfer’s transactions may all be in a single frame or microframe,
or they may be spread over multiple (micro)frames.

Because all of the traffic shares a data path, each transaction must include a
device address that identifies the transaction’s destination. Every device has a
unique address assigned by the host, and all data travels to or from the host.
Each transaction begins when the host sends a block of information that
includes the address of the receiving device and a specific location, called an
endpoint, within the device. Everything a device sends is in response to
receiving a packet sent by the host.

Host Speed and Bus Speed
USB 2.0 hosts in general-purpose PCs support low, full, and high speeds. A
1.x host supports low and full speeds only. (Special-purpose hosts, typically
found in small embedded systems, don’t always support all speeds.)

A 1.x hub doesn’t convert between speeds; it just passes received traffic up or
down the bus, changing only the edge rate and signal polarity of traffic to
and from attached low-speed devices. In contrast, a 2.0 hub acts as a remote
processor with store-and-forward capabilities. The hub converts between
high speed and low or full speed as needed and performs other functions
that help make efficient use of the bus time. The added intelligence of 2.0
hubs is a major reason why the high-speed bus remains compatible with 1.x
hardware.

The traffic on a bus segment is high speed only if the device is high speed
and the host controller and all hubs between the host and device are
2.0-compliant. Figure 2-2 illustrates. A high-speed bus may also have 1.x
hubs, and if so, any bus segments downstream from this hub (away from the
host) are low or full speed. Traffic to and from low- and full-speed devices
travels at high speed between the host and any 2.0 hubs that connect to the

Inside USB Transfers

USB Complete 37

host with no 1.x hubs between. Traffic between a 2.0 hub and a 1.x hub or
another low- or full-speed device travels at low or full speed. A bus with only
a 1.x host controller supports only low and full speeds, even if the bus has
2.0 hubs and high-speed-capable devices.

Elements of a Transfer
Every USB transfer consists of one or more transactions, and each transac-
tion in turn contains packets that contain information. To understand trans-
actions, packets, and their contents, you also need to know about endpoints
and pipes. So that’s where we’ll begin.

Figure 2-2: A USB 2.0 hub uses high speed whenever possible, switching to
low and full speeds when necessary.

Chapter 2

38 USB Complete

Device Endpoints: the Source and Sink of Data
All bus traffic travels to or from a device endpoint. The endpoint is a buffer
that stores multiple bytes. Typically the endpoint is a block of data memory
or a register in the controller chip. The data stored at an endpoint may be
received data or data waiting to transmit. The host also has buffers that hold
received data and data waiting to transmit, but the host doesn’t have end-
points. Instead, the host serves as the start and finish for communications
with device endpoints.

The USB specification defines a device endpoint as “a uniquely addressable
portion of a USB device that is the source or sink of information in a com-
munication flow between the host and device.” This definition suggests that
an endpoint carries data in one direction only. However, as I’ll explain, a
control endpoint is a special case that is bidirectional.

An endpoint’s address consists of an endpoint number and direction. The
number is a value from 0 to 15. The direction is defined from the host’s per-
spective: an IN endpoint providess data to send to the host and an OUT
endpoint stores data received from the host. An endpoint configured for
control transfers must transfer data in both directions, so a control endpoint
actually consists of a pair of IN and OUT endpoint addresses that share an
endpoint number.

Every device must have Endpoint 0 configured as a control endpoint.
There’s rarely a need for additional control endpoints. Some controller chips
support them, however.

Other types of transfers send data in one direction only, though status and
control information may flow in the opposite direction. A single endpoint
number can support both IN and OUT endpoint addresses. For example, a
device might have an Endpoint 1 IN endpoint address for sending data to
the host and an Endpoint 1 OUT endpoint address for receiving data from
the host.

In addition to Endpoint 0, a full- or high-speed device can have up to 30
additional endpoint addresses (1 through 15, with each supporting both IN
and OUT transfers). A low-speed device is limited to two additional end-

Inside USB Transfers

USB Complete 39

point addresses in any combination of directions (for example, Endpoint 1
IN and Endpoint 1 OUT or Endpoint 1 IN and Endpoint 2 IN).

Every transaction on the bus begins with a packet that contains an endpoint
number and a code that indicates the direction of data flow and whether or
not the transaction is initiating a control transfer. The codes are IN, OUT,
and Setup:

As with the endpoint directions, the naming convention for IN and OUT
transactions is from the perspective of the host. In an IN transaction, data
travels from the device to the host. In an OUT transaction, data travels from
the host to the device.

A Setup transaction is like an OUT transaction because data travels from the
host to the device, but a Setup transaction is a special case because it initiates
a control transfer. Devices need to identify Setup transactions because these
are the only type of transactions that devices must always accept and because
the device needs to identify and respond to the request contained in the
received data. Any transfer type may use IN or OUT transactions.

Each transaction contains a device address and an endpoint address. When a
device receives an OUT or Setup packet containing the device’s address, the
endpoint stores the data that follows the OUT or Setup packet and the
hardware typically triggers an interrupt. An interrupt-service routine in the
device can then process the received data and take any other required action.
When a device receives an IN packet containing its device address, if the
device has data ready to send to the host, the hardware sends the data from
the specified endpoint onto the bus and typically triggers an interrupt. An

Transaction
Type

Source of Data Types of Transfers that
Use this Transaction
Type

Contents

IN device all data or status
information

OUT host all data or status
information

Setup host control a request

Chapter 2

40 USB Complete

interrupt-service routine in the device can then do whatever is needed to get
ready for the next IN transaction.

Pipes: Connecting Endpoints to the Host
Before a transfer can occur, the host and device must establish a pipe. A USB
pipe is an association between a device’s endpoint and the host controller’s
software.

The host establishes pipes during enumeration. If the device is removed
from the bus, the host removes the no-longer-needed pipes. The host may
also request new pipes or remove unneeded pipes at other times by request-
ing an alternate configuration or interface for a device. Every device has a
Default Control Pipe that uses Endpoint 0.

The configuration information received by the host includes an endpoint
descriptor for each endpoint that the device wants to use. Each endpoint
descriptor is a block of information that tells the host what it needs to know
about the endpoint in order to communicate with it. The information
includes the endpoint address, the type of transfer to use, the maximum size
of data packets, and, when appropriate, the desired interval for transfers.

Types of Transfers
USB is designed to handle many types of peripherals with varying require-
ments for transfer rate, response time, and error correcting. The four types
of data transfers each handle different needs, and a device can support the
transfer types that are best suited for its purpose. Table 2-1 summarizes the
features and uses of each transfer type.

Control transfers are the only type that have functions defined by the USB
specification. Control transfers enable the host to read information about a
device, set a device’s address, and select configurations and other settings.
Control transfers may also send vendor-specific requests that send and
receive data for any purpose. All USB devices must support control trans-
fers.

Inside USB Transfers

USB Complete 41

Bulk transfers are intended for situations where the rate of transfer isn’t crit-
ical, such as sending a file to a printer, receiving data from a scanner, or
accessing files on a drive. For these applications, quick transfers are nice but
the data can wait if necessary. If the bus is very busy, bulk transfers are
delayed, but if the bus is otherwise idle, bulk transfers are very fast. Only

Table 2-1: Each of the USB’s four transfer types is suited for different uses.
Transfer Type Control Bulk Interrupt Isochronous

Typical Use Identification
and
configuration

Printer,
scanner, drive

Mouse,
keyboard

Streaming
audio, video

Required? yes no no no

Low speed allowed? yes no yes no

Data bytes/millisecond per
transfer, maximum possible
per pipe (high speed).*

15,872
(thirty-one
64-byte
transactions/
microframe)

53,248
(thirteen
512-byte
transactions/
microframe)

24,576
(three
1024-byte
transactions/
microframe)

24,576
(three
1024-byte
transactions/
microframe)

Data bytes/millisecond per
transfer, maximum possible
per pipe (full speed).*

832
(thirteen
64-byte
transactions/
frame)

1216
(nineteen
64-byte
transactions/
frame)

64
(one 64-byte
transaction/
frame)

1023
(one
1023-byte
transaction/
frame)

Data bytes/millisecond per
transfer, maximum possible
per pipe (low speed).*

24 (three
8-byte
transactions)

not allowed 0.8 (8 bytes
per 10
milliseconds)

not allowed

Direction of data flow IN and OUT IN or OUT IN or OUT
(USB 1.0 sup-
ports IN only)

IN or OUT

Reserved bandwidth for all
transfers of the type (percent)

10 at low/full
speed, 20 at
high speed
(minimum)

none 90 at low/full speed, 80 at
high speed (isochronous &
interrupt combined,
maximum)

Error correction? yes yes yes no

Message or Stream data? message stream stream stream

Guaranteed delivery rate? no no no yes

Guaranteed latency (maximum
time between transfers)?

no no yes yes

*Assumes transfers use maximum packet size.

Chapter 2

42 USB Complete

full- and high-speed devices can do bulk transfers. Devices aren’t required to
support bulk transfers, but a specific device class might require them.

Interrupt transfers are for devices that must receive the host’s or device’s
attention periodically. Other than control transfers, interrupt transfers are
the only way that low-speed devices can transfer data. Keyboards and mice
use interrupt transfers to send keypress and mouse-movement data. Inter-
rupt transfers can use any speed. Devices aren’t required to support interrupt
transfers, but a specific device class might require them.

Isochronous transfers have guaranteed delivery time but no error correcting.
Data that might use isochronous transfers incudes audio or video to be
played in real time. Isochronous is the only transfer type that doesn’t support
automatic re-transmitting of data received with errors, so occasional errors
must be acceptable. Only full- and high-speed devices can do isochronous
transfers. Devices aren’t required to support isochronous transfers, but a spe-
cific device class might require them.

Stream and Message Pipes
In addition to classifying a pipe by the type of transfer it carries, the USB
specification defines pipes as either stream or message, according to whether
or not information travels in one or both directions. Control transfers use
bidirectional message pipes; all other transfer types use unidirectional stream
pipes.

Control Transfers Use Message Pipes

In a message pipe, each transfer begins with a Setup transaction containing a
request. To complete the transfer, the host and device may exchange data
and status information, or the device may just send status information. Each
control transfer has at least one transaction that sends information in each
direction.

If a device supports a received request, the device takes the requested action.
If a device doesn’t support the request, the device responds with a code to
indicate that the request isn’t supported.

Inside USB Transfers

USB Complete 43

All Other Transfers Use Stream Pipes

In a stream pipe, the data has no structure defined by the USB specification.
The receiving host or device just accepts whatever arrives. The device firm-
ware or host software can then process the data in whatever way is appropri-
ate for the application.

Of course, even with stream data, the sending and receiving devices will
need to agree on a format of some type. For example, a host application may
define a code that requests a device to send a series of bytes indicating a tem-
perature reading and the time of the reading. Although the host could use
control transfers with a vendor-defined Get_Temperature request, interrupt
transfers may be preferable because of their guaranteed bandwidth.

Initiating a Transfer
When a device driver in the host wants to communicate with a device, the
driver initiates a transfer. The USB specification defines a transfer as the
process of making and carrying out a communication request. A transfer
may be very short, sending as little as a byte of application data, or very
long, sending the contents of a large file.

A Windows application can open communications with a device using a
handle retrieved using standard API functions. To begin a transfer, an appli-
cation may use the handle in calling an API function to request the transfer
from the device’s driver. An application might request to “send the contents
of the file data.txt to the device” or “get the contents of Input Report 1 from
the device.” When an application requests a transfer, the operating system
passes the request to the appropriate device driver, which in turn passes the
request to other system-level drivers and on to the host controller. The host
controller then initiates the transfer on the bus.

For devices in standard classes, a programming language can provide alter-
nate ways to access a device. For example, the .NET Framework includes
Directory and File classes for accessing files on drives. A vendor-supplied
driver can also define its own API functions. For example, devices that use
controllers from FTDI Chip can use FTDI’s D2XX driver, which exposes a

Chapter 2

44 USB Complete

series of functions for setting communications parameters and exchanging
data.

In some cases, a driver is configured to request periodic transfers, and appli-
cations can read the retrieved data or provide data to send in these transfers.
During enumeration, the operating system initiates transfers. Other trans-
fers require an application to request to send or receive data.

Transactions: the Building Blocks of a Transfer
Figure 2-3 shows the elements of a typical transfer. A lot of the terminology
here begins to sound the same. There are transfers and transactions, stages
and phases, data transactions and data packets, Status stages and handshake

Figure 2-3: A USB transfer consists of transactions. The transactions in turn
contain packets, and the packets contain a packet identifier (PID), PID-check
bits, and sometimes additional information.

Inside USB Transfers

USB Complete 45

phases. Data stages have handshake packets and Status stages have data
packets. It can take a while to absorb it all. Table 2-2 lists the elements that
make up each of the four transfer types and may help in keeping the terms
straight.

Each transfer consists of one or more transactions, and each transaction in
turn consists of one, two, or three packets.

The three transaction types are defined by their purpose and direction of
data flow. Setup transactions send control-transfer requests to a device.
OUT transactions send other data or status information to the device. IN
transactions send data or status information to the host.

The USB specification defines a transaction as the delivery of service to an
endpoint. Service in this case can mean either the host’s sending information
to the device, or the host’s requesting and receiving information from the
device.

Each transaction includes identifying, error-checking, status, and control
information as well as any data to be exchanged. A complete transfer may
take place over multiple frames or microframes, but a transaction must com-
plete uninterrupted. No other communication on the bus can break into the
middle of a transaction. Devices thus must be able to respond quickly with
requested data or status information in a transaction. Device firmware typi-
cally configures, or arms, an endpoint to respond to received packets, and
the hardware responds to the packets when they arrive.

A transfer with a small amount of data may require just one transaction.
Other transfers require multiple transactions with a portion of the data in
each.

Transaction Phases
Each transaction has up to three phases, or parts that occur in sequence:
token, data, and handshake. Each phase consists of one or two transmitted
packets. Each packet is a block of information with a defined format. All
packets begin with a Packet ID (PID) that contains identifying information
(shown in Table 2-3). Depending on the transaction, the PID may be fol-

Chapter 2

46 USB Complete

lowed by an endpoint address, data, status information, or a frame number,
along with error-checking bits.

In the token phase of a transaction, the host initiates a communication by
sending a token packet. The PID indicates the transaction type, such as
Setup, IN, OUT, or Start-of-Frame.

In the data phase, the host or device may transfer any kind of information in
a data packet. The PID includes a data-toggle or data-sequencing value used
to guard against lost or duplicated data when a transfer has multiple data
packets.

Table 2-2: Each of the four transfer types consists of one or more transactions,
with each transaction containing two or three phases. (This table doesn’t show
the additional transactions required for the split transactions and PING protocol
used in some transfers.)
Transfer Type Transactions Phases (packets). Each

downstream, low-speed
packet is also preceded by a
PRE packet.

Control Setup Stage One transaction Token

Data

Handshake

Data Stage Zero or more transactions
(IN or OUT)

Token

Data

Handshake

Status Stage One transaction (opposite
direction of transaction(s) in
the Data stage or IN if there is
no Data stage)

Token

Data

Handshake

Bulk One or more transactions
(IN or OUT)

Token

Data

Handshake

Interrupt One or more transactions
(IN or OUT)

Token

Data

Handshake

Isochronous One or more transactions
(IN or OUT)

Token

Data

Inside USB Transfers

USB Complete 47

Table 2-3: The PID (packet identifier) provides information about a transaction.
(Sheet 1 of 2)
Packet
Type

PID
Name

Value Transfer
types
used in

Source Bus Speed Description

Token
(identifies
transaction
type)

OUT 0001 all host all Device and endpoint
address for OUT
(host-to-device) transaction.

IN 1001 all host all Device and endpoint
address for IN
(device-to-host) transaction.

SOF 0101 Start-of-
Frame

host all Start-of-Frame marker and
frame number.

SETUP 1101 control host all Device and endpoint
address for Setup
transaction.

Data
(carries data
or status
code)

DATA0 0011 all host,
device

all Data toggle,
data PID sequencing

DATA1 1011 all host,
device

all Data toggle,
data PID sequencing

DATA2 0111 isoch. host,
device

high Data PID sequencing

MDATA 1111 isoch.,
split
transac-
tions

host,
device

high Data PID sequencing

Handshake
(carries
status code)

ACK 0010 all host,
device

all Receiver accepts error-free
data packet.

NAK 1010 control,
bulk,
interrupt

device all Receiver can’t accept data
or sender can’t send data or
has no data to transmit.

STALL 1110 control,
bulk,
interrupt

device all A control request isn’t sup-
ported or the endpoint is
halted.

NYET 0110 control
Write,
bulk
OUT,
split
transac-
tions

device high Device accepts error-free
data packet but isn’t yet
ready for another or
a hub doesn’t yet have
complete-split data.

Chapter 2

48 USB Complete

In the handshake phase, the host or device sends status information in a
handshake packet. The PID contains a status code (ACK, NAK, STALL, or
NYET). The USB specification sometimes uses the terms status phase and
status packet to refer to the handshake phase and packet.

The token phase has one additional use. A token packet may carry a
Start-of-Frame (SOF) marker, which is a timing reference that the host
sends at 1-millisecond intervals at full speed and at 125-microsecond inter-
vals at high speed. This packet also contains a frame number that incre-
ments and rolls over on reaching the maximum. The number indicates the
frame count, so the eight microframes within a frame all have the same
number. An endpoint may synchronize to the Start-of-Frame packet or use
the frame count as a timing reference. The Start-of-Frame marker also keeps
devices from entering the low-power Suspend state when there is no other
USB traffic.

Low-speed devices don’t see the SOF packet. Instead, the hub that the
device attaches to uses a simpler End-of-Packet (EOP) signal called the
low-speed keep-alive signal, sent once per frame. As the SOF does for

Special PRE 1100 control,
interrupt

host full Preamble issued by host to
indicate that the next packet
is low speed.

ERR 1100 all hub high Returned by a hub to report
a low- or full-speed error in
a split transaction.

SPLIT 1000 all host high Precedes a token packet to
indicate a split transaction.

PING 0100 control
Write,
bulk OUT

host high Busy check for bulk OUT
and control Write data
transactions after NYET.

reserved 0000 – – – For future use.

Table 2-3: The PID (packet identifier) provides information about a transaction.
(Sheet 2 of 2)
Packet
Type

PID
Name

Value Transfer
types
used in

Source Bus Speed Description

Inside USB Transfers

USB Complete 49

full-speed devices, the low-speed keep-alive keeps low-speed devices from
entering the Suspend state.

Of the four special PIDs, one is used only with low-speed devices, one is
used only with high-speed devices, and two are used when a low- or
full-speed device’s 2.0 hub communicates at high speed with the host.

The special low-speed PID is PRE, which contains a preamble code that
tells hubs that the next packet is low speed. On receiving a PRE PID, the
hub enables communications with any attached low-speed devices. On a
low- and full-speed bus, the PRE PID precedes all token, data, and hand-
shake packets directed to low-speed devices. High-speed buses encode the
PRE in the SPLIT packet, rather than sending the PRE separately.
Low-speed packets sent by a device don’t require a PRE PID.

The PID used only with high-speed devices is PING. In a bulk or control
transfer with multiple data packets, before sending the second and any sub-
sequent data packets, the host may send a PING to find out if the endpoint
is ready to receive more data. The device responds with a status code.

The SPLIT PID identifies a token packet as part of a split transaction, as
explained later in this chapter. The ERR PID is used only in split transac-
tions. A 2.0 hub uses this PID to report an error to the host in a low- or
full-speed transaction. The ERR and PRE PIDs have the same value but
won’t be confused because a hub never sends a PRE to the host or an ERR to
a device. Also, ERR is used only on high-speed segments and PRE is never
used on high-speed segments.

Packet Sequences

Every transaction has a token packet. The host is always the source of this
packet, which sets up the transaction by identifying the packet type, the
receiving device and endpoint, and the direction of any data the transaction
will transfer. For low-speed transactions on a full-speed bus, a PRE packet
precedes the token packet. For split transactions, a SPLIT packet precedes
the token packet.

Depending on the transfer type and whether the host or device has informa-
tion to send, a data packet may follow the token packet. The direction spec-

Chapter 2

50 USB Complete

ified in the token packet determines whether the host or device sends the
data packet.

In all transfer types except isochronous, the receiver of the data packet (or
the device if there is no data packet) returns a handshake packet containing
a code that indicates the success or failure of the transaction. The absence of
an expected handshake packet indicates a more serious error.

Timing Constraints and Guarantees

The allowed delays between the token, data, and handshake packets of a
transaction are very short, intended to allow only for cable delays and
switching times plus a brief time to allow the hardware to prepare a
response, such as a status code, in response to a received packet.

A common mistake in writing firmware is to assume that the firmware
should wait for an interrupt before providing data to send to the host.
Instead, before the host requests the data, the firmware must copy the data
to send into the endpoint’s buffer and configure the endpoint to send the
data on receiving an IN token packet. The interrupt occurs after the transac-
tion completes, to tell the firmware that the endpoint’s buffer can store data
for the next transaction. If the firmware waits for an interrupt before provid-
ing the initial data, the interrupt never happens and no data is transferred.

A single transaction can carry an amount of data up to the maximum packet
size specified for the endpoint. A data packet that is less than the maximum
packet size is a short packet. A transfer with multiple transactions may take
place over multiple frames or microframes, which don’t have to be contigu-
ous. For example, in a full-speed bulk transfer of 512 bytes, the maximum
number of bytes in a single transaction is 64, so transferring all of the data
requires at least 8 transactions, which may occur in one or more
(micro)frames.

Split Transactions

A 2.0 hub communicates with a 2.0 host at high speed unless a 1.x hub lies
between them. When a low- or full-speed device is attached to a 2.0 hub,
the hub converts between speeds as needed. But speed conversion isn’t the

Inside USB Transfers

USB Complete 51

only thing a hub does to manage multiple speeds. High speed is 40 times
faster than full speed and 320 times faster than low speed. It doesn’t make
sense for the entire bus to wait while a hub exchanges low- or full-speed data
with a device.

The solution is split transactions. A 2.0 host uses split transactions when
communicating with a low- or full-speed device on a high-speed bus. What
would be a single transaction at low or full speed usually requires two types
of split transactions: one or more start-split transactions to send information
to the device and one or more complete-split transactions to receive infor-
mation from the device. The exception is isochronous OUT transactions,
which don’t use complete-split transactions because the device has nothing
to send.

Even though they require more transactions, split transactions make better
use of bus time because they minimize the amount of time spent waiting for
a low- or full-speed device to transfer data. The USB 2.0 host controller and
the closest 2.0 hub upstream from the low- or full-speed device are entirely
responsible for performing split transactions. The device and its firmware
don’t have to know or care whether the host is using split transactions. The
transactions at the device are identical whether the host is using split trans-
actions or not. At the host, device drivers and application software don’t
have to know or care whether the host is using split transactions because the
protocol is handled at a lower level. Chapter 15 has more about how split
transactions work.

Ensuring that Transfers Are Successful
USB transfers use handshaking and error-checking to help ensure that data
gets to its destination as quickly as possible and without errors.

Handshaking
Like other interfaces, USB uses status and control, or handshaking, infor-
mation to help to manage the flow of data. In hardware handshaking, dedi-
cated lines carry the handshaking information. An example is the RTS and

Chapter 2

52 USB Complete

CTS lines in the RS-232 interface. In software handshaking, the same lines
that carry the data also carry handshaking codes. An example is the XON
and XOFF codes transmitted on the data lines in RS-232 links.

USB uses software handshaking. A code indicates the success or failure of all
transactions except in isochronous transfers. In addition, in control trans-
fers, the Status stage enables a device to report the success or failure of an
entire transfer.

Handshaking signals transmit in the handshake or data packet. The defined
status codes are ACK, NAK, STALL, NYET, and ERR. The absence of an
expected handshake code indicates a more serious error. In all cases, the
expected receiver of the handshake uses the information to help decide what
to do next. Table 2-4 shows the status indicators and where they transmit in
each transaction type.

ACK

ACK (acknowledge) indicates that a host or device has received data without
error. Devices must return ACK in the handshake packets of Setup transac-
tions when the token and data packets were received without error. Devices
may also return ACK in the handshake packets of OUT transactions. The
host returns ACK in the handshake packets of IN transactions.

NAK

NAK (negative acknowledge) means the device is busy or has no data to
return. If the host sends data at a time when the device is too busy to accept
the data, the device returns a NAK in the handshake packet. If the host
requests data from the device when the device has nothing to send, the
device returns a NAK in the data packet. In either case, NAK indicates a
temporary condition, and the host retries later.

Hosts never send NAK. Isochronous transactions don’t use NAK because
they have no handshake packet for returning a NAK. If a device or the host
doesn’t receive transmitted isochronous data, it’s gone.

Inside USB Transfers

USB Complete 53

STALL

The STALL handshake can have any of three meanings: unsupported con-
trol request, control request failed, or endpoint failed.

When a device receives a control-transfer request that the device doesn’t sup-
port, the device returns a STALL to the host. The device also returns a
STALL if the device supports the request but for some reason can’t take the
requested action. For example, if the host sends a Set_Configuration request
that requests the device to set its configuration to 2, and the device supports
only configuration 1, the device returns a STALL. To clear this type of stall,
the host just needs to send another Setup packet to begin a new control
transfer. The USB specification calls this type of stall a protocol stall.

Another use of STALL is to respond when the endpoint’s Halt feature is set,
which means that the endpoint is unable to send or receive data at all. The
USB specification calls this type of stall a functional stall.

Table 2-4: The location, source, and contents of the handshake signal depend
on the type of transaction.
Transaction type
or PING query

Data packet
source

Data packet
contents

Handshake
packet source

Handshake
packet
contents

Setup host data device ACK

OUT host data device ACK,
NAK,
STALL,
NYET (high
speed only),
ERR (from hub in
complete split)

IN device data,
NAK,
STALL,
ERR (from hub in
complete split)

host ACK

PING
(high speed only)

none none device ACK,
NAK,
STALL

Chapter 2

54 USB Complete

Bulk and interrupt endpoints must support the functional stall. Although
control endpoints may also support this use of STALL, it’s not recom-
mended. A control endpoint in a functional stall must continue to respond
normally to other requests related to controlling and monitoring the stall
condition. And an endpoint that is capable of responding to these requests is
clearly capable of communicating and shouldn’t be stalled. Isochronous
transactions don’t use STALL because they have no handshake packet for
returning the STALL.

On receiving a functional STALL, the host drops all pending requests to the
device and doesn’t resume communications until the host has sent a success-
ful request to clear the Halt feature on the device. Hosts never send STALL.

NYET

Only high-speed devices use NYET, which stands for not yet. High-speed
bulk and control transfers have a protocol that enables the host to find out
before sending data if a device is ready to receive the data. At full and low
speeds, when the host wants to send data in a control, bulk, or interrupt
transfer, the host sends the token and data packets and receives a reply from
the device in the handshake packet of the transaction. If the device isn’t
ready for the data, the device returns a NAK and the host tries again later.
This can waste a lot of bus time if the data packets are large and the device is
often not ready.

High-speed bulk and control transactions with multiple data packets have a
better way. After receiving a data packet, a device endpoint can return a
NYET handshake, which says that the endpoint accepted the data but is not
yet ready to receive another data packet. When the host thinks the device
might be ready, the host can send a PING token packet, and the endpoint
returns either an ACK to indicate the device is ready for the next data packet
or NAK or STALL if the device isn’t ready. Sending a PING is more efficient
than sending the entire data packet only to find out the device wasn’t ready
and having to resend later. Even after responding to a PING or OUT with
ACK, an endpoint is allowed to return NAK on receiving the data packet
that follows but should do so rarely. The host then tries again with another
PING. The use of PING by the host is optional.

Inside USB Transfers

USB Complete 55

A 2.0 hub may also use NYET in complete-split transactions. Hosts and
low- and full-speed devices never send NYET.

ERR

The ERR handshake is used only by high-speed hubs in complete-split
transactions. ERR indicates the device didn’t return an expected handshake
in the transaction the hub is completing with the host.

No Response

Another type of status indication occurs when the host or a device expects to
receive a handshake but receives nothing. This lack of response can occur if
the receiver’s error-checking calculation detected an error. On receiving no
response, the sender knows that it should try again. If if multiple tries fail,
the sender can take other action. (If the receiver ACKs the data but doesn’t
use it, the problem is probably in the data-toggle value.)

Reporting the Status of Control Transfers
In addition to reporting the status of transactions, the same ACK, NAK,
and STALL codes report the success or failure of complete control transfers.
An additional status code is a zero-length data packet (ZLP), which reports
successful completion of a control transfer. A transaction with a zero-length
data packet is a transaction whose Data phase consists of a Data PID and
error-checking bits but no data. Table 2-5 shows the status indicators for
control transfers.

For control Write transfers, where the device receives data in the Data stage,
the device returns the transfer’s status in the data packet of the Status stage.
A zero-length data packet means the transfer was successful, a STALL indi-
cates that the device can’t complete the transfer, and a NAK indicates that
the device isn’t ready to complete the transfer. The host returns an ACK in
the handshake packet of the Status stage to indicate that the host received
the response.

For control Read transfers, where the host receives data in the Data stage,
the device returns the status of the transfer in the handshake packet of the

Chapter 2

56 USB Complete

Status stage. The host normally waits to receive all of the packets in the Data
stage, then returns a zero-length data packet in the Status stage. The device
responds with ACK, NAK, or STALL. However, if the host begins the Sta-
tus stage before all of the requested data packets have been sent, the device
must abandon the Data stage and return a status code.

Error Checking
The USB specification spells out hardware requirements that ensure that
errors due to line noise will be rare. Still, there is a chance that a noise glitch
or unexpectedly disconnected cable could corrupt a transmission. For this
reason, USB packets include error-checking bits that enable a receiver to
identify just about any received data that doesn’t match what was sent. In
addition, for transfers that require multiple transactions, a data-toggle value
keeps the transmitter and receiver synchronized to ensure that no transac-
tions are missed entirely.

Error-checking Bits

All token, data, and Start-of-Frame packets include bits for use in
error-checking. The bit values are calculated using a mathematical algorithm
called the cyclic redundancy check (CRC). The USB specification explains

Table 2-5: Depending on the direction of the Data stage, the status information
for a control transfer may be in the data or handshake packet of the Status
stage.
Transfer Type and
Direction

Status Stage
Direction

Status stage’s data
packet

Status stage’s hand-
shake packet

Control Write
(Host sends data to
device or no Data
stage)

IN Device sends status:
zero-length data packet
(success),
NAK (busy), or
STALL (failed)

Host returns ACK

Control Read
(Device sends data to
host)

OUT Host sends zero-length
data packet

Device sends status:
ACK (success),
NAK (busy), or
STALL (failed)

Inside USB Transfers

USB Complete 57

how the CRC is calculated. The hardware handles the calculations, which
must be done quickly to enable the device to respond appropriately.

The CRC is applied to the data to be checked. The transmitting device per-
forms the calculation and sends the result along with the data. The receiving
device performs the identical calculation on the received data. If the results
match, the data has arrived without error and the receiving device returns an
ACK. If the results don’t match, the receiving device sends no handshake.
The absence of the expected handshake tells the sender to retry.

Typically, the host tries a total of three times, but the USB specification gives
the host some flexibility in determining the number of retries. On giving up,
the host informs the driver of the problem.

The PID field in token packets uses a simpler form of error checking. The
lower four bits in the field are the PID, and the upper four bits are its com-
plement. The receiver can check the integrity of the PID by complementing
the upper four bits and ensuring that they match the PID. If not, the packet
is corrupted and is ignored.

The Data Toggle

In transfers that require multiple transactions, the data-toggle value can
ensure that no transactions are missed by keeping the transmitting and
receiving devices synchronized. The data-toggle value is included in the PID
field of the token packets for IN and OUT transactions. DATA0 is a code of
0011, and DATA1 is 1011. In controller chips, a register bit often indicates
the data-toggle state, so the data-toggle value is often referred to as the
data-toggle bit. Each endpoint maintains its own data toggle.

Both the sender and receiver keep track of the data toggle. A Windows host
handles the data toggles without requiring any user programming. Some
device controller chips also handle the data toggles completely automati-
cally, while others require some firmware control. If you’re debugging a
device where it appears that the proper data is transmitting on the bus but
the receiver is discarding the data, chances are good that the device isn’t
sending or expecting the correct data toggle.

Chapter 2

58 USB Complete

When the host configures a device on power up or attachment, the host and
device each set their data toggles to DATA0 for all except some high-speed
isochronous endpoints. On detecting an incoming data packet, the host or
device compares the state of its data toggle with the received data toggle. If
the values match, the receiver toggles its value and returns an ACK hand-
shake packet to the sender. The ACK causes the sender to toggle its value for
the next transaction.

The next received packet in the transfer should contain a data toggle of
DATA1, and again the receiver toggles its bit and returns an ACK. The data
toggle continues to alternate until the transfer completes. (An exception is
control transfers, where the Status stage always uses DATA1.)

If the receiver is busy and returns a NAK, or if the receiver detects corrupted
data and returns no response, the sender doesn’t toggle its bit and instead
tries again with the same data and data toggle.

If a receiver returns an ACK but for some reason the sender doesn’t see the
ACK, the sender will think that the receiver didn’t get the data and will try
again using the same data and data-toggle bit. In this case, the receiver of the
repeated data doesn’t toggle the data toggle and ignores the data but returns
an ACK. The ACK re-synchronizes the data toggles. The same thing hap-
pens if the sender mistakenly sends the same data toggle twice in a row.

Control transfers always use DATA0 in the Setup stage, use DATA1 in the
first transaction of the Data stage, toggle the bit in any additional Data-stage
transactions, and use DATA1 in the Status stage. Bulk endpoints toggle the
bit in every transaction, resetting the data toggle only after completing a
Set_Configuration, Set_Interface, or Clear_Feature(ENDPOINT HALT)
request. Interrupt endpoints can behave the same as bulk endpoints. Or an
interrupt IN endpoint can toggle its data toggle in each transaction without
checking for the host’s ACKs, at the risk of losing some data. Full-speed iso-
chronous transfers always use DATA0. Isochronous transfers can’t use the
data toggle to correct errors because there is no handshake packet for return-
ing an ACK or NAK and no time to resend missed data.

Some high-speed isochronous transfers use DATA0, DATA1, and additional
PIDs of DATA2 and MDATA. High-speed isochronous IN transfers that

Inside USB Transfers

USB Complete 59

have two or three transactions per microframe use DATA0, DATA1, and
DATA2 encoding to indicate a transaction’s position in the microframe:

High-speed isochronous OUT transfers that have two or three transactions
per microframe use DATA0, DATA1, and MDATA encoding to indicate
whether more data will follow in the microframe:

This use of the data toggle and other PIDs is called data PID sequencing.

Number of IN Transactions
in the Microframe

Data PID

First Transaction Second Transaction Third Transaction

1 DATA0 – –

2 DATA1 DATA0 –

3 DATA2 DATA1 DATA0

Number of OUT
Transactions in the
Microframe

Data PID:

First Transaction Second Transaction Third Transaction

1 DATA0 – –

2 MDATA DATA1 –

3 MDATA MDATA DATA2

Chapter 2

60 USB Complete

